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Abstract

We review the physical mechanisms behind extinction/absorption of elec-
tromagnetic waves in a medium. First the physical picture is explained without
formulae, then a formal treatment is given of the macroscopic Maxwell equa-
tions coupled to various constitutive models. We examine the Debeye consti-
tutive model in some detail and derive a formula for the skindepth within this
model.

1 Physical ideas
Maxwell’s theory
The famous Maxwell equations describe (amongst other things) the propagation of
electromagnetic waves and their interaction with material objects. Two forms of
the Maxwell equations are often confused but should be distinguished: Maxwell’s
equations in vacuum and Maxwell’s equations in a medium.

As far as we know Maxwell’s equations in a vacuum describe all electromagnetic
phenomena in nature at the macroscopic level and, when extended to the quantum
domain, at every scale that we have probed. This form of the theory gives equations
that govern the electric and magnetic fields (E and B) and their interaction with
charged or magnetic material objects in space-time. The theory has two fundamental
constants of nature, the vacuum permittivity ϵ0 and the vacuum permeability µ0.
Waves propagate freely with speed c = 1/

√
ϵ0µ0.

The Maxwell equations in a medium are in essence the vacuum equations coupled
to some very specific material objects, namely a classical continuum model of matter.
In this case several additional fields are introduced such as the electric displacement
field D and the magnetization field H. These are not fundamental fields but provide
a convenient description of the medium such that the equations in a medium have a
similar form as the equations in vacuum, with the fundamental constants ϵ0 and µ0
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now becoming functions ϵ(x, ω) and µ(x, ω) of space and frequency. Except in the
simplest cases these functions must be measured for specific materials.

A physical model that describes the measured ϵ(x, ω) and µ(x, ω) is called a
constitutive model. Such models invariably describe the interaction of charged and
dipole structures in the medium with the electromagnetic field. For a textbook on
the subject see for example [16].

Attenuation in a medium
The physical picture of propagation and attenuation of a wave in a medium is that the
wave sets structures in the medium such as dipoles in motion. These material dipoles
have their own electromagnetic field which is then added to the incoming wave causing
a phase shift, and hence what appears as a slower propagation speed. Moving these
dipoles requires energy and this energy is taken out of the electromagnetic wave. The
first conductivity models of this nature that were proposed are the Drude model [7, 8]
and the Lorentz-Drude model [12, 13, 14]. A similar model for dielectrics was proposed
by Debye [4]. These models are still thought to be essentially correct and have been
extended and modified. We mention the widely used Cole-Cole model [2, 3] and
the Debye model extended with inertial effects [15]. Though these physical models
were originally thought to describe atomic and molecular structures, it was later
realized that these models are quite universal and dipole oscillations can occur also
in larger structures called “clusters” in the Dissado-Hill theory [5]. All these models
are founded on the Debye model in that they consider a large population of various
elementary Debye dipoles in a medium. This mechanism is generally called relaxation,
for a review see [10]

If we assume the medium is homogeneous and the wave is stationary (periodic)
this mechanism operates in the same fashion everywhere in the medium and it follows
that the wave loses a constant fraction of its energy and amplitude per meter leading
to an exponential decay in the direction of travel with a decay constant which is
expressed as the “attenuation length” (sometimes called “skindepth”) L which is the
length of travel after which the amplitude decays by a factor 1/e. We can calculate L
from theory if we are given a constitutive model. This is illustrated in Fig. 1 where we
depict a monochromatic continuous wave that is emitted at x = 0 and propagates to
the right in a lossy medium. The dipoles will oscillate with an amplitude proportional
to the wave amplitude and the friction loss is proportional to the dipole amplitude,
hence an exponential loss.

If the wave is not stationary, there may be significant transient effects before the
dipoles start their regular vibration pattern and the above analysis breaks down. As
it takes a few “pushes” from the electric field to get the dipoles to oscillate and the
loss is proportional to the amplitude of the dipole oscillation the head of the wave
suffers less loss than the following part. This is illustrated in Fig. 2. The first period
of the wave (drawn in red) encounters dipoles that are at rest, whereas the rest of
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Figure 1: A monochromatic continuous wave is emitted at x = 0 and propagates to
the right in a lossy medium. The perturbed dipoles are indicated.

Figure 2: The same wave as in Fig. 1 right after the transmitter is turned on. The
wave has propagated only as far as x = 15.

the wave encounters dipoles that are already oscillation. Hence the head of the wave
is less attenuated that the rest. For pulsed GPR the antenna is turned off after one
period and the red part of the wave is all that is propagating.

How large this effect is cannot be determined from first principles. In the classical
Debye model the effect amounts to about a 20% reduction in absorption, however the
Debye model ignores the dipole mass, which plays a crucial role here in determining
how long it takes before the dipole reaches maximum amplitude. When a mass term
is included [15] the effect can possibly be quite large.

How large can only be determined experimentally by comparing attenuation of a
pulse with attenuation of a continuous wave. However I speculate that the effect is
large enough to contribute significantly to the unexpectedly large penetration depths
achieved by Adrok.
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2 Technical Details
Maxwell’s equations are

∇ · D = ρf ∇ · B = 0 (1a)
∇× E = −Bt ∇×H = Jf +Dt (1b)

with E the electrical field, B the magnetic field, D the electric displacement field, H
the magnetizing field, ρf the free charge density, Jf the free current density, and t

the time derivative. We have the definitions

D = ϵ0E+P H = B/µ0 −M (1c)

where P is the polarization and M the magnetization. ϵ0 ≈ 8.85 10−12, and µ0ϵ0 =
1/c2 with c ≈ 3 108 (SI units). P and M have to be specified by a specific material
(or “constitutive”) model.

In the frequency domain at angular frequency ω for isotropic linear materials
we can write (it should be clear from the context when fields are time or frequency
dependent)

P = ϵ0χ(ω)E M = χm(ω)B/µ0 (2)

with χ(m) the electric (magnetic) susceptibility which results in

D = ϵE = ϵ0(1 + χ)E H = B/µ = B/(µ0(1 + χm)) (3)

with

ϵ = ϵ0(1 + χ) = ϵ0ϵr µ = µ0(1 + χm) = µ0µr (4)

with ϵ(r) the (relative) permittivity, and µ(r) the (relative) permeability. Finally we
write the conductivity model as

Jf = σ(ω)E+ J (5)

with σ the conductivity and J external currents not due to material conductivity.
The whole zoo of frequency dependent “constants” are complex numbers unless they
have subscript 0.

3 Pure electrics in an uncharged medium
Let’s assume M = 0 and ρf = 0 here. We can now eliminate the magnetic field and
obtain (for divergence free E)

∆E = µ0J
f
t + µ0Dtt. (6)
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with ∆ the Laplacian. In the frequency domain we get

∆E+ µ0(ϵω
2 − iσω)E = iµ0ωJ. (7)

Now let’s find a plane wave solution of (7) without source current and compute the
skindepth.

Consider a wave of the form

E = exe
i(ωt−kx) (8)

and we get the dispersion relation

k2 = µ0(ϵω
2 − iσω). (9)

Given the redundant zoo of “constants” let’s decide to express everything in terms of
two complex frequency dependent quantities χ = χ′ − iχ′′ and σ = σ′ + iσ′′ giving.

k2 =
ω2

c2
(1 + χ′ + σ′′/(ωϵ0)− i(χ′′ + σ′/(ωϵ0)). (10)

I have seen the definition here of a “permittivity” ρ

ρ = 1 + χ′ + σ′′/(ωϵ0)− i(χ′′ + σ′/(ωϵ0)) (11)

which name makes no sense, as the terms with σ have nothing to do with the polar-
ization. It’s still a useful variable, so I’ll call it ρ = ρ′ − iρ′′ instead. Experimentally
it is often not possible to distinguish the effects of the conductivity and the polar-
ization in which case a single complex constant ρ suffices. For our purposes we need
to distinguish the polarization and the conductivity. Solving (10) gives for the wave
number k

k =
ω

c

√
ρ′/2(

√√
ρ′′2/ρ′2 + 1 + 1 + i

√√
ρ′′2/ρ′2 + 1− 1). (12)

Substituting (12) in (8) gives us the attenuation length

L =
c

ω
/(
√

ρ′/2

√√
ρ′′2/ρ′2 + 1− 1). (13)

This formula agrees with for example [11, 17] For small losses this expression is well
approximated by

L =
2c
√
ρ′

ωρ′′
. (14)

Assuming a real conductivity (i.e., no chargeability), this becomes

L =
2cϵ′r

ωϵ′′r + σ′/ϵ0
(15)

with ϵ′r and ϵ′′r the real and imaginary parts of the relative permittivity.
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4 Microscopically motivated medium models
Several models have been proposed in the literature to explain experimentally mea-
sured functions χ(ω) (or ϵ(ω)) and σ(ω). Some of the popular models used in classical
(low frequency) EM methods such as Cole-Cole [2, 3] are however unsuitable for a
time-domain analysis or simulation because the functions are non-polynomial so have
no corresponding local PDE in the time-space domain. We therefore focus on local
models here.

4.1 Polarization models
For the case σ = 0 the simplest model is the Debye model [4], which postulates

τPt +P = ϵ0aE (16)

with a some number. This is motivated by considering the electrical force on dipoles
immersed in liquid. The damping is caused by molecular collisions which is expressed
in the Debye relaxation time τ and the dipole mass is ignored. This results in a
susceptibility of

χ =
a

1 + iτω
. (17)

An extension of the Debye model including inertial effects was proposed in [15]
with (16) becoming

mPtt + τPt +P = ϵ0aE (18)

with m an effective mass terms which leads to

χ =
a

1 + iτω − ω2m
. (19)

In (18) we recognize a damped harmonic oscillator driven by the electric field.
A phenomenological model is the Cole-Cole model [2, 3] which postulates

χ =
a

1 + (iτω)s
. (20)

with typically s ≈ 0.6. No time domain model of the form (16) is available, but it is
instead thought that many different kind of dipoles obeying something like (16) can
behave like the Cole-Cole model. The Dissado-Hill cluster theory [5] further supports
this idea. A further refinement is the Havriliak-Negami model [9] which is

χ =
a

(1 + (iτω)s)p
. (21)

These models have no direct physical justification and just fit measured data.
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4.2 Conductivity models
The simplest model is the Drude model [7, 8],which predates the Debye model but
looks similar. The model assumes free electrons are experiencing a friction force due
to collisions. The current contribution (σE in (5)) is modeled as

τlJt + J = bE (22)

with b some number and τl ≈ 10−14. There is also the Lorentz-Drude model [12, 12,
12], which adds a mass term mJtt to (22). The Drude model leads to

σ =
b

1 + iωτl
. (23)

These models were first proposed to describe free electrons in metals but can also
applied to more complicated conduction mechanisms.

5 The extended Debye model
For our purposes it suffices to consider a plane wave, governed by the 1+1 dimensional
Maxwell’s equation with a generalized Debye model, which includes a dipole mass
term, and a static conductivity takes a simpler form. In this section all vectors live in
the xy plane and depend only on z. Time differentiation is indicated with a dot and
z differentiation by a prime. The dual of a vector u is denoted by u∗ with u∗

x = uy

and u∗
y = −ux. Maxwell’s equation with a generalized Debye model for polarization

become

Ḃ = E∗′ (24a)

ϵ0Ė+ Ṗ = − 1

µ0

B∗′ − σE (24b)

λ2P̈+ τṖ+P = ϵ0χE. (24c)

This decouples into two sets of equation for each polarization mode, say B = By and
E = Ex.

Ḃ = −E ′ (25a)

ϵ0Ė + Ṗ =
1

µ0

B′ − σE (25b)

λ2P̈ + τ Ṗ + P = ϵ0χE. (25c)

Since we now deal with scalar functions of time and one coordinate let’s rename z x.
The functions to solve for are E(x, t), B(x, t), and P (x, t) (though we are not directly
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interested in P ). Parameters with a subscript zero are constants, and σ and χ are
prescribed functions of x only and have discontinuities. At t = 0 B(x, 0) and E(x, 0)
are prescribed functions and P (x, 0) = Ṗ (x, 0) = 0.

The goal is to stably solve (25) with a scheme that allows τ = 0 and λ = 0 as a
limiting case that is treated in [1].

Let us change notation slightly here and write the PDE system as

Bt = −Ex, (26a)

ϵ0Et + Pt = − 1

µ0

Bx − σE, (26b)

λ2Ptt + τPt + P = ϵ0χE. (26c)

Here the functions B(x, t), E(x, t) and P (x, t) are subject to initial conditions at
t = 0 (in particular, P (x, 0) = Ṗ (x, 0) ≡ 0). Assume also boundary conditions on E,
say Dirichlet or periodic or absorbing. The subscript t denotes differentiation in time
and x likewise in space. The given nonnegative parameter functions σ(x) and χ(x)
may be only piecewise continuous in space. The parameters with subscript zero are
given nonnegative constants.

A standard procedure for eliminating B is to differentiate (26a) by x and (26b)
by t. Then substitution for Bxt = Btx yields

ϵ0Ett + σEt + Ptt −
1

µ0

Exx = 0. (27)

Ignoring P for a moment, note that this PDE changes from hyperbolic to parabolic
in the passage ϵ0/σ → 0.

5.1 Frequency domain analysis
In the frequency domain (27) and (25c) determine the spectral relation between wave
number k and angular frequency ω, and hence the propagation velocity and decay
rate of monochromatic waves in the stationary case. We obtain

P̃ = Gϵ0χẼ. (28a)

with

G = 1/(1− λ2ω2 + iτω) (28b)

where the tilde denotes the Fourier transform in space and time. Putting everything
together we get

k2 =
ω2

c2
(1 +Gχ− i

σ

ϵ0ω
). (28c)
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Defining

Z = GG∗ (28d)

this becomes

k2 =
ω2

c2
(1 + (1− λ2ω2)Zχ− i(

σ

ϵ0ω
+ τZωχ)). (28e)

We solve (28e) for

k = k1 + ik2 (28f)

and obtain a relative dielectric “constant”

ϵr = (k1c/ω)
2 (28g)

and skindepth

L = 1/k2. (28h)

For the pure Debye model (λ = 0) after some algebra we arrive at the following
explicit formulae.

k1 =
ω

c

√√
α2 + β2 + β

2
, (29a)

k2 =
ω

c

√√
α2 + β2 − β

2
, (29b)

where we have defined

Q = 1 + ω2τ 2, (29c)

α =
ωτχ

Q
+

σ

ϵ0ω
, (29d)

β = 1 + χ/Q. (29e)

A MATLAB script to plot skindepth (as in for example Fig. 6 in [6]) and effective
relative permittivity using this formulae is provided below.
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c = 299792458;
ep0 = 8.85e-12;
mu = 1.26e-6;
sigs = [.075e-3];
om0 = 2*pi*65e6;
tau = 4e-10;
chi =5.7-1;
f1 = 1e6;
f2 = 100e6;
Lmax = 200;
om = 2*pi*linspace(f1,f2,100000);

N = length(sigs);

for k=1:N
sig = sigs(k);
Q = @(om) (1+om.^2.*tau.^2);
al = @(om) (om.*tau.*chi./Q(om) + (sig/ep0)./om);
bet = @(om)(1+chi./Q(om));

k1 = om/c.*sqrt(sqrt(al(om).^2+bet(om).^2)+bet(om))/sqrt(2);
k2 = om/c.*sqrt(sqrt(al(om).^2+bet(om).^2)-bet(om))/sqrt(2);
L = 1./k2;

figure(1)
if(k==1)

clf;
end
lw = 2;
f = om/(2*pi)*1e-6;
semilogx(f,L,'linewidth',lw);
ylabel 'skindepth'
xlabel 'f (MHz)'

axis([f(1) f(end) 0 Lmax]);
if(k==1)

hold on;
end

end
title('Skindepth in Debye model');

for k=1:N
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sig = sigs(k);
Q = @(om) (1+om.^2.*tau.^2);
al = @(om) (om.*tau.*chi./Q(om) + (sig/ep0)./om);
bet = @(om)(1+chi./Q(om));

k1 = om/c.*sqrt(sqrt(al(om).^2+bet(om).^2)+bet(om))/sqrt(2);
k2 = om/c.*sqrt(sqrt(al(om).^2+bet(om).^2)-bet(om))/sqrt(2);
ep = (k1*c./om).^2;;

figure(2)
if(k==1)

clf;
end
lw = 2;
f = om/(2*pi)*1e-6;
semilogx(f,ep,'linewidth',lw);
ylabel 'DC'
xlabel 'f (MHz)'
if(k==1)

hold on;
end

end
title('Relative permittivity in Debye model');
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Figure 3: Skindepth (in meters) and relative permittivity (DC) as a function of
frequency for some conductivities. σ = .07mS/m and τ = 0.4ns are the parameters
measured in [6]. Note the almost horizontal region in the bottom plot over the
range 1− 100MHz, indicating that velocity is mostly frequency independent in that
range, a necessary condition for the transmission of wide-band wave packets, to avoid
dispersion.
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