

Subsurface Temperature Measurement Using Electromagnetic Waves and Machine Learning for Enhanced Oil Recovery

Kees van den Doel, Colin Stove, Michael Robinson and Gordon Stove

Adrok Ltd

WWW.EAGEONLINE2020.0RG

Outline

- Background and motivation
- EM and borehole field measurements
- Machine learning approach
- Results
- Discussion

Background and motivation

Enhanced Oil Recovery (EOR)

- Allows more (~60%) oil to be extracted from reservoir
 - Viscosity
 - Mobility ratio
- Various methods in use
 - Gas injection
 - Thermal methods \leftarrow this application
- Steam injection
 - Need to monitor subsurface temperature profile
 - Use temperature observation wells (TOW)
 - Measure 3-4 times a year, expensive
 - Cost of drilling
 - \$5000,- typical cost per well for measurement
 - No production during measurement

Virtual TOW wish list

- No drilling
- Using surface data
- Measure without well downtime
- Faster acquisition
- More frequent monitoring
- Low cost per measurement
- Easy data processing

EM and borehole field measurements

EM data/TOW data

- Pulsed radar subsurface imaging
 - Low frequency (1-3MHz) for deeper penetration
 - Bistatic data acquisition
 - Stacking 100,000 shots
 - Measurement takes a few minutes per well
- Data acquired on large producing oil field
 - 21 wells measured from relatively homogeneous field
 - 3 wells measured from a different oil field
 - TOW data used a ground truth
 - TOW data down to 1400ft

Machine learning

EM data \rightarrow temperature using ML

- Both data are time series
- Using ML to predict temperature (T) from EM data (M)
- Exclude 1 well from data set and train on rest (blind tests)
- 5 layer feedforward neural network used
 - Trained on 20 (M,T) pairs
 - Then predict well not trained on
- 3 sites from different field not used in training
 - Used to evaluate effect of ground conditions

Results

Blind test results

Red = TOW data (Kelvin) Blue = EM prediction Depth in feet

Last 3 are from a different field (not used in training)

Discussion

Discussion

- Results are encouraging
- 3 "foreign" wells failed
 - Training site specific
 - Local variations in ground conditions "spoil" results
- How can we improve accuracy/reliability?
 - Assumed ground conditions homogeneous
 - Use also geological data for training to address this
 - Use autoencoder based training (as used for virtual NMR)
- Why does it work?
 - EM waves penetrate sufficiently deep
 - Similar to apparent seabed imaging using conventional radar

Autoencode T data to 5 activations

Preliminary data. 40 TOW profiles (red) encoded to 5 activations using an autoencoder network (Blue).

More results in 2021

Thanks for your attention!

