
Introduction

Thermal injection Butler (1991) is an enhanced oil recovery (EOR) technique that allows sig-
nificantly more oil to be extracted from a reservoir. Depletion of easily extracted oil reserves
and technological advances has caused this to become a popular EOR technique.

Crude oil is heated underground by various methods such as steam injection to affect viscosity
and mobility ratio resulting in yield increases up to 60%. Another EOR method, not consid-
ered in this paper, is through gas injection. With thermal methods steam is injected into oil
wells to improve oil production rates and enhance oil recovery by decreasing oil viscosity. The
implementation of oil recovery by steam injection requires a good knowledge of the subsur-
face thermal conditions. Temperature observation wells (TOW) are used to measure subsurface
temperature profiles which can be used to define the vertical thickness of the steam flood, area
sweep, rate of heat flow and heat losses to surrounding rock layers. When trying to enhance oil
recovery from heavy oilfields, operators may take temperature measurements once every 90 to
180 days for each TOW location. The cost of conducting this invasive down hole thermome-
ter measurement is around $5,000 per well, in addition to the upfront drilling cost. During
measurement the wells are not in production and there is additional cost associated with this
downtime. Problems arising between TOW temperature measurements can go undetected and
cause significant problems.

In this article we present a noninvasive method for the remote monitoring of subsurface temper-
ature using low frequency radar pulses. Conventional ground penetrating radar Jol (2009) has
limited applications for subsurface measurements in oil fields due to electromagnetic losses,
which are rather high in the commonly used frequency range of 50−1000MHz, resulting in a
rather shallow exploration depth. Deeper penetration up to several kilometers has been achieved
with much lower frequencies (1− 5Mhz) using very large antenna’s in resistive environments
such as Martian rock, ice, and permafrost Berthelier et al. (2005); Angelopoulos et al. (2013).
We present results using the Adrok radar system Stove and van den Doel (2015) which emits
a multispectral wave packet with significant energy in the low 1− 5Mhz band van den Doel
et al. (2014) for increased penetration depth which is in our experience sufficient to reach the
comparatively shallow hot zones where steam was injected.

The ADR signal generator produces a pulse of electromagnetic energy (frequencies typically
range between 1MHz to 70MHz) that is fed to the antenna and is transmitted into the ground.
Once the signal has been sent to the transmitting antenna a signal is sent to the receiving control
unit to synchronise collection of the subsurface reflected data, which is collected through the
receiving antenna and then digitized. The transmitted pulse is depicted in Figure 1 where
we also show the power spectrum. It is not the usual localized pulse with a single centre
frequency but a more complicated waveform. The higher frequency components allow accurate
localization at shallow depths, but attenuate rapidly in the ground, while the lowest frequency
component around 3Mhz can penetrate much deeper. We thus combine the advantage of high
spatial resolution at high frequencies with the advantage of greater depth penetration at low
frequencies at the expense of requiring more sophisticated analysis.

Radar surveys were performed at 64 locations near TOWs in 3 oilfields and returns were cor-
related, after signal processing Stove et al. (2018) described below, with measured down hole
temperatures by training a feedforward neural network. The results were evaluated by exclud-
ing one of the data pairs from training and use a network trained on the remaining wells to
predict the excluded site, resulting in blind tests. We believe results are encouraging, though
not yet fully reliable and we discuss avenues for improvements.
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Figure 1 Transmitted pulse and its power spectral density.

Measurements

Radar scans were performed near TOWs at three operational oilfields, referred to here as sites
A, B, and C. At site A we obtained 21 measurements, at site B 40 and at site C 3. Each site has
approximately homogeneous subsurface geology, but the sites themselves differ.

Each scan consisted of the emission of a low frequency pulse and detection of returns as time
domain traces recorded digitally. At each location over 100,000 traces were taken for noise
reduction through stacking. A velocity model based on a calibration site was used for time to
depth conversion up to 1900ft which is the largest depth for which TOW data was available.

Changes in subsurface temperature will affect conductivity and permittivity Kummerow and
Raab (2015), which will affect the radar returns. Due to the diffuse nature of the temperature
gradients we will not see sharp reflections as in conventional subsurface imaging with GPR
or seismic but more complicated effects. Initial analysis of the data set suggested the mod-
ulation Mather and Koch (2011) widely used in remote sensing, as a candidate parameter to
correlate with temperature. Variations in subsurface geology will also affect results and we
disentangle these effects from temperature effects through machine learning.

Analysis

Modulation (M) and TOW temperature data (T) were down sampled to a 50ft grid and the
available (M,T) pairs, except the target, were used to train a feedforward neural network to
predict the target T. Once trained the neural network should extract the temperature from the
radar data which contains a mix of features caused by the temperature gradients and by the
geology. As the geology differs significantly between the three sites, separate networks were
trained for sites A and B, referred to as the A-net and B-net. Training the network for site C is
not useful as we have only 3 data pairs.

In Figure 2 and 3 we display the measured modulation (0 ≤ M ≤ 1) derived from the radar
scans and the measured TOW temperature for site A and site B, where migration from time to
depth was performed using a velocity model from a calibration site.

Due to the small training set a principled approach Goodfellow et al. (2016) using training,
validation, and testing sets is not feasible and we proceeded more heuristically, experimenting
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with various stopping criteria for training and network architectures. Best performance was
found using a 5 layer network with 3 hidden layers with 15 units, stopping training (using
standard backpropagation gradient descent) at 500 iterations. Minor changes to this architecture
do not affect the results very much. Small changes in results can be observed depending on
the (random) initialization of the network weights, as the optimization (training) is highly non
convex. To reduce this variability we have averaged results over 100 independently randomized
network initializations.

The results for site A and C are depicted in Figure 4, The plots 1− 21 represent blind tests
for those specific wells, using a network trained on the other 20 wells. The last three plots,
shaded green, show the result obtained by applying net-A trained on all 21 sites to predict the
temperature profiles for the 3 wells of site C. For comparison we also show the results using
a smaller network with only one hidden layer in Figure 5, which is comparable though a little
worse.

The results for site B are depicted in Figure 6. Each plot is a blind prediction using a network
trained on the other 39 sites only.

Discussion

Examining the results for site A and C in Figure 4 we note that the results from site C (shaded
green) are negative, whereas the site A results are mostly qualitatively correct. This demon-
strates that the modulation M is determined by the geology as well as the temperature, because
geology is the main difference between the sites. Focusing on site A only, 1−3 are quite good,
correctly identifying the steam injection location around 1300ft and the temperature curve is
matched quite well, though the actual temperature is underestimated. 4− 6 correctly identify
the hot zone at the correct depth, but the steep gradient around 600ft was missed. The cold
locations 7−9 correctly show a more or less constant low temperature, with 8 deviating most
in the shallow region. Temperature profiles in 10− 12 show a lukewarm zone around 1000ft,
which shows up in 10 but not in the others. 13− 15 follow the ground truth quite well, but
ramping up a bit too slow. The hot zone in 16− 18 appears about 100ft too deep, and max-
imum temperature is underestimated. TOW data for 19− 21 is missing most of the hot zone
apparently around 1500ft (deeper TOW data was not available), and the hot zone is identified
around 1300ft in 19 and 21, and missed altogether in 20.

Turning to site B in Figure 6 we note that at some wells such as 2 and 20 we have a very good
fit, at some wells like 11 and 13 the predicted hot zone has a significant depth error, and at some
wells like 24 and 38 the prediction fails altogether.

The large variability in the quality of the reconstructions can be explained by local variations in
geology or other subsurface anomalies. If additional data pertaining to the subsurface structure
of each well were made available to the network this problem could perhaps be solved resulting
in more reliable predictions.

Another approach circumventing this problem would be to use independent machine learning
for each individual well for time-lapse monitoring. This would restrict use of this method near
wells with a TOW, where after an initial temperature log taken in the usual way, a network is
trained to correlate radar returns for that specific site, then obtain radar measurements, which is
significantly cheaper than acquiring a temperature log and is non-invasive, at shorter intervals
than 90−180 days. If changes are observed in the predicted temperature profile for a specific
well this could indicate a problem and another temperature log from the TOW could be taken,
potentially detecting the problem months before it would show up using the normal temperature

IOR 2021 – 21st European Symposium on Improved Oil Recovery
19–22 April 2021, Vienna, Austria



measurement schedule.

Conclusions

Results presented here indicate that the modulation derived from the radar traces contains in-
formation about the subsurface temperature, and could potentially be used to remotely measure
temperature accurately if all other subsurface features were the same. Variation in the quality
of results, in particular comparing site C reconstructions with site A reconstructions suggest
the method could be improved by incorporating more information in the machine learning, in
particular subsurface geology.

Another obvious source of inaccuracy is the small size of the training set which can be increased
by taking more measurements. A complementary approach is to use physical simulation of the
process to create simulated training data, allowing large training sets to be constructed. This
approach requires accurate physical models and as electromagnetic properties of earth materials
are notoriously complex, and difficult to measure in situ, this will pose challenges for further
research.

It would be interesting to apply this methodology to other EM subsurface measurement meth-
ods such as resistivity surveys which should also be able to see a relation between resistivity
and temperature which perhaps could be disentangled from the geological features.
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Figure 2 Modulation (black) and temperature in Fahrenheit (blue) versus depth in feet for 21
training holes at site A.
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Figure 3 Modulation (black) and temperature in Fahrenheit (blue) versus depth in feet for 40
training holes at site B.
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Figure 4 Reconstructed temperature (blue) and TOW measured temperature (Fahrenheit) ver-
sus depth (feet) for site A and C. Each location from site A (1 − 21) was trained using 20
modulation-temperature pairs, excluding the location itself. The last 3 plots used all site A
data sets for training and used this to predict temperatures for 3 locations at site C, which has
different geology.
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Figure 5 Same results as Figure 4 using a smaller neural network with only one hidden layer.
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Figure 6 Reconstructed temperature (blue) and TOW measured temperature (Fahrenheit) ver-
sus depth (feet). Each location from site B was trained using 39 modulation-temperature pairs,
excluding the location itself.
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