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Monitoring subsurface temperature gradients using pulsed electromagnetic waves and machine 

learning 

 
Pulsed ground electromagnetic waves (EM) have been deployed to scan subsurface structures by 
transmitting electromagnetic waves into the ground and measuring the resonant responses from 
different geological materials. This technology can identify various subsurface characteristics, 
including rock types and the presence of fluids. 
 
For geothermal exploration, the ability to detect temperature gradients and heat sources underground is 
crucial. The pulsed EM technology is capable of detecting differences in rock types and the presence of 
fluids, which are important indicators of potential geothermal resources.  In the context of finding 

geothermal heat, the pulsed EM technology has been trained to measure heat directly.  It can aid in 
identifying key geological structures associated with geothermal activity, such as volcanic rocks or 
fault zones that might channel hot fluids. This information can be useful for inferring areas with 
potential geothermal activity.  The technique shows great potential as a digital predrilling method for 
complementing direct geothermal exploration methods such as temperature gradient drilling or 
geothermal well logging. 
 
We present a noninvasive method for the remote monitoring of subsurface temperature using low 
frequency EM pulses.  Conventional ground penetrating EM [Jol, 2009] has limited applications for 
subsurface measurements in oil fields due to electromagnetic losses, which are rather high in the 
commonly used frequency range of 50 to 1000MHz, resulting in a rather shallow exploration depth. 

 
Deeper penetration up to several kilometers has been achieved with much lower frequencies (1 − 
5Mhz) using very large antennas in resistive environments such as Martian rock, ice, and permafrost 
[Berthelier et al., 2005, Angelopoulos et al., 2013]. We present results using the pulsed EM system 
[Stove and van den Doel, 2015] which emits a multispectral wave packet with significant energy in the 
low 1 to 5Mhz band [van den Doel et al., 2014 and Stove et al. 2023] for increased penetration depth 
which is in our experience sufficient to reach the comparatively shallow hot zones where steam was 
injected. Pulsed EM surveys were performed at 64 locations near TOWs in 3 oilfields and returns were 
correlated, after signal processing [Stove et al., 2018] described below, with measured down hole 
temperatures by training a feedforward neural network. 
 

The results were evaluated by excluding one of the data pairs from training and use a network trained 
on the remaining wells to predict the excluded site, resulting in blind tests. We believe results are 
encouraging, though not yet fully reliable, and we discuss avenues for improvements. 
 
 
1. Measurements 

 
EM scans were performed near Temperature Observation Wells (TOWs) at three operational oilfields 
in California, USA, referred to here as sites A, B, and C. We obtained 21 measurements at site A, 40 
measurements at site B and 3 measurements at site C.. Each site has approximately homogeneous 
subsurface geology, but the sites themselves differ. 
 

Each scan consisted of the emission of a low frequency pulse and detection of returns as time domain 
traces recorded digitally. At each location over 100,000 traces were taken for noise reduction through 
stacking. A velocity model based on a calibration site was used for time to depth conversion up to 
1900ft which is the largest depth for which TOW data was available. 
 
Changes in subsurface temperature will affect conductivity and permittivity [Kummerow and Raab, 
2015], which will affect the EM returns. Due to the diffuse nature of the temperature gradients, we will 
not see sharp reflections as in conventional subsurface imaging with GPR or seismic but more 
complicated effects. 
 
Initial analysis of the data set suggested the modulation [Mather and Koch, 2011] widely used in 
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remote sensing, as a candidate parameter to correlate with temperature. Variations in subsurface 
geology will also affect results and we disentangle these effects from temperature effects through 
machine learning. 
 
 
2. Analysis 

 
Modulation (M) and TOW temperature data (T) were down sampled to a 50ft grid and the available 
(M,T) pairs, except the target, were used to train a feedforward neural network to predict the target T. 
Once trained the neural network should extract the temperature from the EM data which contains a mix 
of features caused by the temperature gradients and by the geology.  As the geology differs 
significantly between the three sites, separate networks were trained for sites A and B, referred to as the 
A-net and B-net. Training the network for site C is not useful as we have only 3 data pairs. 
 
We present the measured modulation (0 ≤ M ≤ 1) derived from the EM scans and the measured TOW 
temperature for site A and site B, where migration from time to depth was performed using a velocity 
model from a calibration site. 

 
Due to the small training set a principled approach [Goodfellow et al., 2016] using training, validation, 
and testing sets is not feasible and we proceeded more heuristically, experimenting with various 
stopping criteria for training and network architectures. Best performance was found using a 5-layer 
network with 3 hidden layers with 15 units, stopping training (using standard backpropagation gradient 
descent) at 500 iterations. Minor changes to this architecture do not affect the results very much. Small 
changes in results can be observed depending on the (random) initialization of the network weights, as 
the optimization (training) is highly non convex. To reduce this variability we have averaged results 
over 100 independently randomized network initializations. 
 
The results for site A and C are depicted in Figure 1. The plots 1 to 19 represent blind tests for those 

specific wells, using a network trained on the other 20 wells. The last three plots, shaded green, show 
the result obtained by applying net-A trained on all 21 sites to predict the temperature profiles for the 3 
wells of site C.     
 
The results for site B are shown in the presentation. Each plot is a blind prediction using a network 
trained on the other 39 sites only. 
 
 
3. Discussion 

 
Examining the results for site A and C, we note that the results from site C (shaded green) are negative, 
whereas site A results are mostly qualitatively correct. This demonstrates that the modulation M is 

determined by geology as well as the temperature, because geology is the main difference between the 
sites. 
 
Focusing on site A only, 1 to 3 are quite good, correctly identifying the steam injection location around 
1300ft and the temperature curve is matched quite well, though the actual temperature is 
underestimated.  4 to 6 correctly identify the hot zone at the correct depth, but the steep gradient around 
600ft was missed.  The cold locations 7 to 9 correctly show a more or less constant low temperature, 
with 8 deviating most in the shallow region. Temperature profiles in 10 to 12 show a lukewarm zone 
around 1000ft, which shows up in 10 but not in the others. 13 to 15 follow the ground truth quite well, 
but ramping up a bit too slow. The hot zone in 16 to 18 appears around 100ft too deep, and maximum 
temperature is underestimated. TOW data for 19 to 21 is missing most of the hot zone apparently 

around 1500ft (deeper TOW data was not available), and the hot zone is identified around 1300ft in 19 
and 21 and missed altogether in 20. 
 
Turning to site B, we note that at some wells such as 2 and 20 we have a very good fit, at some wells 
like 11 and 13 the predicted hot zone has a significant depth error, and at some wells like 24 and 38 the 
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prediction fails altogether. 
 
The large variability in the quality of the reconstructions can be explained by local variations in 
geology or other subsurface anomalies. If additional data pertaining to the subsurface structure of each 
well were made available to the network this problem could perhaps be solved resulting in more 
reliable predictions. 

 
Another approach circumventing this problem would be to use independent machine learning for each 
individual well for time-lapse monitoring. This would restrict use of this method near wells with a 
TOW, where after an initial temperature log taken in the usual way, a network is trained to correlate 
EM returns for that specific site, then obtain EM measurements, which is significantly cheaper than 
acquiring a temperature log and is non-invasive, at shorter intervals than 90 to 180 days. If changes are 
observed in the predicted temperature profile for a specific well this could indicate a problem and 
another temperature log from the TOW could be taken, potentially detecting the problem months 
before it would show up using the normal temperature measurement schedule. 
 
 

4. Conclusions 

 
Results presented here indicate that the modulation derived from the EM traces contains information 
about the subsurface temperature and could potentially be used to remotely measure temperature 
accurately if all other subsurface features were the same. Variation in the quality of results, in 
particular comparing site C reconstructions with site A reconstructions suggest the method could be 
improved by incorporating more information in the machine learning, in particular subsurface geology. 
 
Another obvious source of inaccuracy is the small size of the training set which can be increased by 
taking more measurements. A complementary approach is to use physical simulation of the process to 
create simulated training data, allowing large training sets to be constructed. This approach requires 

accurate physical models and as electromagnetic properties of earth materials are notoriously complex, 
and difficult to measure in situ, this will pose challenges for further research. 
 
It would be interesting to apply this methodology to other EM subsurface measurement methods such 
as resistivity surveys which should also be able to see a relation between resistivity and temperature 
which perhaps could be disentangled from the geological features. 
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Figure  1: Reconstructed temperature (blue) and TOW measured temperature (Fahrenheit) 

versus depth (feet) for site A and C. Each location from site A (1 to 21) was trained using 20 

modulation-temperature pairs, excluding the location itself.  The last 3 plots used all site A data 

sets for training and used this to predict temperatures for 3 locations at site C, which has 

different geology. 

 

 

 


